Extension of the RangedSummarizedExperiment to
store the output of different methods intended for the same purpose
in a given dataset. For example, a differential expression analysis could be
done using limma-voom, edgeR and DESeq2. The
SummarizedBenchmark class provides a framework that is useful to store, benckmark and
compare results.
performanceMetricsA SimpleList of the same length
as the number of assays containing performance
functions to be compared with the ground truths.
BenchDesignA BenchDesign originally used to generate the
results in the object.
#> #>#> #> #>#> #> #>data(cobradata_example) ## a bit of data wrangling and reformatting assays <- list( qvalue=cobradata_example@padj, logFC=cobradata_example@score ) assays[["qvalue"]]$DESeq2 <- p.adjust(cobradata_example@pval$DESeq2, method="BH") groundTruth <- DataFrame( cobradata_example@truth[,c("status", "logFC")] ) colnames(groundTruth) <- names( assays ) colData <- DataFrame( method=colnames(assays[[1]]) ) groundTruth <- groundTruth[rownames(assays[[1]]),] ## constructing a SummarizedBenchmark object sb <- SummarizedBenchmark( assays=assays, colData=colData, groundTruth=groundTruth )