R/SummarizedBenckmark-constructor.R
SummarizedBenchmark.Rd
Function to construct SummarizedBenchmark
objects.
SummarizedBenchmark(assays, colData, ftData = NULL, groundTruth = NULL, performanceMetrics = NULL, BenchDesign = NULL, ...)
assays | A list containing outputs of the methods to be benchmark. Each element of the list must contain a matrix or data.frame of n x m, n being the number of features tested (e.g. genes) and m being the number of methods in the benchmark. Each element of the list must contain a single assay (the outputs of the methods). For example, for a benchmark of differential expression methods, one assay could contain the q-values from the different methods and another assay could be the estimated log fold changes. |
---|---|
colData | A |
ftData | A |
groundTruth | If present, a |
performanceMetrics | A |
BenchDesign | A |
... | Additional parameters passed to |
A SummarizedBenchmark
object.
## loading the example data from iCOBRA library(iCOBRA) data(cobradata_example) ## a bit of data wrangling and reformatting assays <- list( qvalue=cobradata_example@padj, logFC=cobradata_example@score ) assays[["qvalue"]]$DESeq2 <- p.adjust(cobradata_example@pval$DESeq2, method="BH") groundTruth <- DataFrame( cobradata_example@truth[,c("status", "logFC")] ) colnames(groundTruth) <- names( assays ) colData <- DataFrame( method=colnames(assays[[1]]) ) groundTruth <- groundTruth[rownames(assays[[1]]),] ## constructing a SummarizedBenchmark object sb <- SummarizedBenchmark( assays=assays, colData=colData, groundTruth=groundTruth ) colData(sb)$label <- rownames(colData(sb))